John Goodenough
My wife and I often enjoy BBC documentaries, and historian Dan Snow is a favorite host. In his series about the history of railways in England, he observed that, as the industrial revolution increased manufacturing in England, there was a need to move product around more cheaply, which in turn encouraged transportation innovations such as the steam train.
In a previous post, I’ve talked about the fraught nature of technical predictions. The same applies to predictions about costs, but the history of railways suggests that invention will be applied to reduce the costs of parts of the supply chain that are growing relatively more significant. For example, as relative costs reduce for any one particular contributor to electricity production, attention turns to bringing down the costs of other components.
In the context of renewables, we have seen ongoing reduction in the cost of wind and solar. To support the utilization of that energy, various ancillary services are required, including “regulation ancillary service.” If you had asked me a decade ago about renewable integration, I would have predicted that regulation ancillary service would become an increasingly significant part of the cost of renewable integration. However, in recent work with Juan Andrade and Yingzhang Dong, we investigated why, in fact, the amounts (and costs) of regulation ancillary service have not increased in the Electric Reliability Council of Texas (ERCOT), despite a huge increase in renewable penetration.
The fundamental answer is that there have been a multitude of changes to the ERCOT market design that has allowed the generation capacity for regulation to be utilized more effectively. The biggest change was the move from the zonal to the nodal market, but other changes have also contributed. These changes have enabled significantly more wind power to be utilized without increasing the cost of regulation ancillary service needed.
As with locomotives and manufacturing, as the need and costs of ancillary services seemed to be looming larger, imagination and innovation have resulted in better ways to utilize ancillary services to complement the production of renewable energy.
As many of the contributors to costs of renewables decrease, the issue of intermittency and the need for storage becomes more significant. Battery storage is currently too high-cost for bulk storage. But John Goodenough, inventor of the lithium-ion battery and my colleague in mechanical engineering, has recently published a paper describing a solid-state lithium-ion battery that may significantly improve the economics of battery storage. Lower cost batteries may be the new locomotive of renewable development.
Like this:
Like Loading...
Related
About Ross Baldick
Electricity is an increasingly complex industry in the midst of transition to renewables and decarbonization. Using my 25 years’ experience as an engineer, policy analyst, and academic, I help my consulting clients think through their toughest technical challenges and formulate their best business strategies.
John Goodenough, batteries, and steam trains
John Goodenough
My wife and I often enjoy BBC documentaries, and historian Dan Snow is a favorite host. In his series about the history of railways in England, he observed that, as the industrial revolution increased manufacturing in England, there was a need to move product around more cheaply, which in turn encouraged transportation innovations such as the steam train.
In a previous post, I’ve talked about the fraught nature of technical predictions. The same applies to predictions about costs, but the history of railways suggests that invention will be applied to reduce the costs of parts of the supply chain that are growing relatively more significant. For example, as relative costs reduce for any one particular contributor to electricity production, attention turns to bringing down the costs of other components.
In the context of renewables, we have seen ongoing reduction in the cost of wind and solar. To support the utilization of that energy, various ancillary services are required, including “regulation ancillary service.” If you had asked me a decade ago about renewable integration, I would have predicted that regulation ancillary service would become an increasingly significant part of the cost of renewable integration. However, in recent work with Juan Andrade and Yingzhang Dong, we investigated why, in fact, the amounts (and costs) of regulation ancillary service have not increased in the Electric Reliability Council of Texas (ERCOT), despite a huge increase in renewable penetration.
The fundamental answer is that there have been a multitude of changes to the ERCOT market design that has allowed the generation capacity for regulation to be utilized more effectively. The biggest change was the move from the zonal to the nodal market, but other changes have also contributed. These changes have enabled significantly more wind power to be utilized without increasing the cost of regulation ancillary service needed.
As with locomotives and manufacturing, as the need and costs of ancillary services seemed to be looming larger, imagination and innovation have resulted in better ways to utilize ancillary services to complement the production of renewable energy.
As many of the contributors to costs of renewables decrease, the issue of intermittency and the need for storage becomes more significant. Battery storage is currently too high-cost for bulk storage. But John Goodenough, inventor of the lithium-ion battery and my colleague in mechanical engineering, has recently published a paper describing a solid-state lithium-ion battery that may significantly improve the economics of battery storage. Lower cost batteries may be the new locomotive of renewable development.
Share this:
Like this:
Related
About Ross Baldick
Electricity is an increasingly complex industry in the midst of transition to renewables and decarbonization. Using my 25 years’ experience as an engineer, policy analyst, and academic, I help my consulting clients think through their toughest technical challenges and formulate their best business strategies.