Intro.

Localized Policies

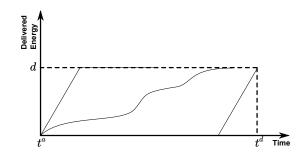
Conclusion

Harnessing Demand Flexibility to Match Renewable Production 50th Annual Allerton Conference on Communication, Control, and Computing

Mahdi Kefayati and Ross Baldick

Allerton, IL, Oct, 3, 2012

Intro.	PEV Dem. Flexibility	Localized Policies	Conclusion
000	0000000	0000	
Agenda			


- Introduction and Motivation
- 2 Analysis of PEV Demand Flexibility
- 3 Localized Policies for Managing PEV Demand
- 4 Conclusion

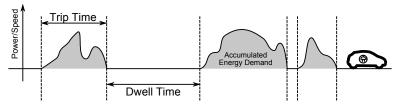
 \circ

Intro.	PEV Dem. Flexibility	Localized Policies	Conclusion
000	0000000	0000	00
THE REAL PROPERTY.	. of Electric Demond		

Flexibility of Electric Demand

- Demand has been typically treated as inelastic and uncontrollable.
- Uncontrollable generation is often incorporated with demand as "net-load".
- Substantial amount of demand is flexible:
 - It is not bound to a specific power trajectory,
 - e.g. HVAC systems, heating and cooling, and PEV charging,
 - Usually a definite amount of <u>energy</u> should be delivered subject to a <u>deadline</u> and potentially <u>rate constraints</u>.

Intro. ○●○	PEV Dem. Flexibility	Localized Policies	Conclusion
Paradigm Shit	ft in Power Systems		


- As the amount of non-dispatchable generation increases, we need more control on the demand side for reliable operation of the system.
- Depart from paradigm that controllable generation matches uncontrollable demand.
 - Controllable assets can be on supply side, demand side or even both.
 - This shift has market implications, particularly regarding how we distribute the cost of reserves necessitated by uncontrollable generation.
- Smart grids are the right step in providing the infrastructure for communication and control of demand side resources.
- A key challenge is the distributed and variable nature of demand side assets.

Intro.	PEV Dem. Flexibility	Localized Policies	Conclusion
000	0000000	0000	
Our Focus			

- How to efficiently harness demand flexibility to ease renewable integration.
- Key questions:
 - How much is the potential?
 - How hard is it to utilize demand flexibility?
 - How to incentivize demand participation?
- Our focus in this talk is mostly on PEVs, though some of the methods proposed can be used for other flexible loads.

Intro.	PEV Dem. Flexibility	Localized Policies	Conclusion
000	0000000	0000	
PEV Demand			

- For this analysis, we have used *Traffic Choices Survey* data from NREL [nre], ~ 450 vehicles, more than a year of GPS location data, $\sim 725,000$ trips, collected in Seattle, WA.
- Wind and electric demand data are from ERCOT, January through November, 2010.
- PEV parameters for calculating charging requirements are taken from Nissan Leaf specification:
 - 70 miles range.
 - $C_d = 0.24$
- For charging, Level 2 AC EVSE (3.3kW) is assumed.

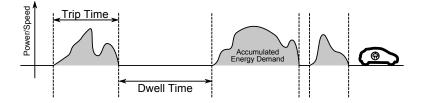
Intro. 000	PEV Dem. Flexibility ○●○○○○○○	Localized Policies	Conclusion
PEV Demand	Flexibility		

- So how flexible is PEV demand?
- Let us first define demand flexibility:

 $\label{eq:Flexibility} \mathsf{Flexibility} = 1 - \frac{\mathsf{Accumulated Energy Demand}}{\mathsf{EVSE Capacity} \times \mathsf{Dwell Time}}$

- Basically, how much charging capacity can be left unused during dwell time.
- Between $-\infty$ and 1,
- Negative if inadequate dwell time,
- Zero if just enough,
- Approaches one as demand becomes more flexible.

In	tro.
	00

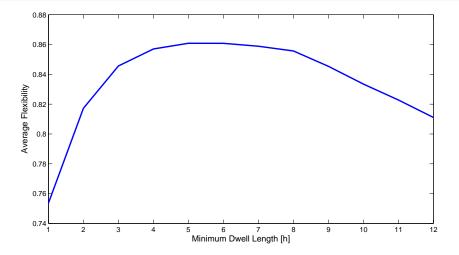

PEV Dem. Flexibility

Localized Policies

Conclusion

Suitable Dwells for PEV Charging

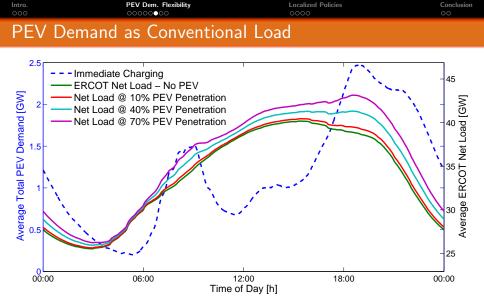
- Not all dwell times are suitable for charging.
 - Short dwell times.
 - Where charging is not available.
 - The driver just does not like charging at that time.
- We consider only the dwell times that are longer than some threshold.


Intro.

PEV Dem. Flexibility

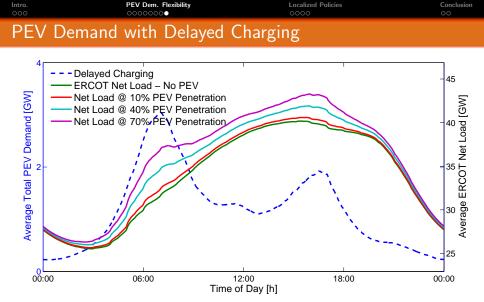
Localized Policies

Conclusion


PEV Demand Flexibility vs. Min. Dwell Time

* Averaged over all trips, accumulating energy demand, EVSE Cap = 3.3kW.

Intro. 000	PEV Dem. Flexibility ○○○○●○○○	Localized Policies	Conclusion
PEV Demand	as Conventional Loa	d	


- What is the PEV demand if people start charging at the nominal EVSE rating once they arrive at their destination?
 - also known as immediate mode.
- This would naturally happen in absence of:
 - Information, e.g. departure time.
 - Incentives, e.g. tariffs.
 - Demand management/Load Aggregation mechanisms.
- Our analysis shows that:
 - The aggregate load can be very correlated with current demand, exacerbating the diurnal patterns of the total load.
 - High Peak-to-Average Ratios (PAR) can affect distribution network, even though the aggregate PEV load might be relatively small compared to total load.
- Clustering is indeed likely, e.g. Mueller area in Austin.

- Min dwell time = 3hrs, ERCOT data is average over days in 2010.
- Total number of vehicles = 15M (Total number of vehicles registered in TX).
- 40% penetration rate is assumed.

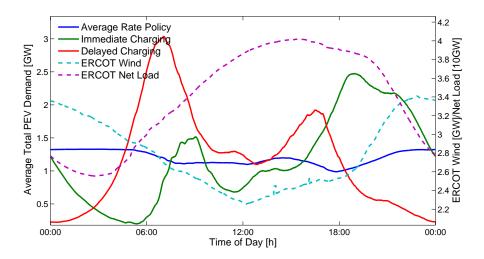
Intro.	PEV Dem. Flexibility	Localized Policies	Conclusion
000	00000000	0000	00
PEV	Demand with Delayed	Charging	

- Some PEVs support delayed mode.
- In delayed mode, the PEV owner is required to enter his/her departure time.
- The PEV automatically starts at the latest time possible to finish charging before the departure time.
- The PEV is charged at the full charging rate.
- The charging profile is similar to immediate mode, except that is shifted to the end of the dwell time.
- Our analysis shows that:
 - Delayed charging can actually be worse than immediate mode in terms of correlation with demand.
 - High Peak-to-Average Ratios (PAR) can affect distribution network, even though the aggregate PEV load might be relatively small compared to total load.

• Min dwell time = 3hrs, ERCOT data is average over days in 2010.

• Total number of vehicles = 15M (Total number of vehicles registered in TX).

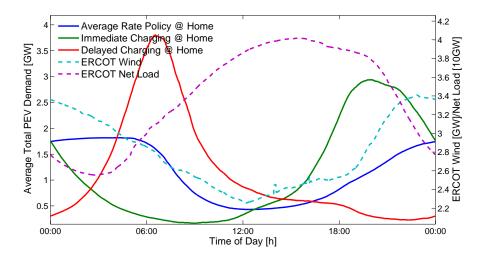
• 40% penetration rate is assumed.


Intro. 000	PEV Dem. Flexibility	Localized Policies ●○○○	Conclusion
The Aver	age Rate Policy		

- Consider the Average Rate (AR) policy:
 - Upon arrival, ask the driver for departure time.
 - Charge at the minimum of EVSE capacity and energy demand divided by dwell time.
 - That is, pick the rate such that the dwell time is just enough to finish the charging, subject to EVSE capacity.

Charge rate:
$$x_t = \min\{\frac{d}{t^d - t^a}, \bar{x}\}$$
 (1)

- Requires no information/incentives about prices and/or network status.
- Achieves full charge by departure time if possible.


Intro.	PEV Dem. Flexibility	Localized Policies	Conclusion
		0000	00
PEV Load vs.	Wind		

 Intro.
 PEV Dem. Flexibility
 Localized Policies
 Conclusion

 000
 0000000
 000
 000

 PEV Load - Only Home Charging

Intro.	PEV Dem. Flexibility	Localized Policies	Conclusion
000	0000000	0000	
Average Rate	Policy - Analysis		

- Advantages:
 - Much smoother local and aggregate load.
 - Much better correlation with renewables.
 - $\bullet\,$ Battery spends less time in high SoC \rightarrow longer battery life.
 - No need for communication and control.
 - No sacrifice of user comfort.
 - Can be readily implemented in current PEVs (perhaps via a software update).
- Can we utilize flexibility even more?
 - Need for more information (e.g. market prices, frequency deviations).
 - Need for incentives for users (dynamic prices, incentives).
- What can be attained?
 - Actual demand response and coordination with the grid.
 - Provision of ancillary services (AS).
 - See [KefCar10] and [KefBal11] for more discussion.

Intro.	PEV Dem. Flexibility	Localized Policies	Conclusion
000	0000000	0000	•0
Conclusion			

- Utilizing demand flexibility is key for effective integration of intermittent renewables.
- PEV load is particularly flexible.
- Local information can help substantially in matching PEV load with renewables and reduce network burden.

Intro. 000	PEV Dem. Flexibility	Localized Policies	Conclusion ○●
Reference	S		
[KefBal11]	Mahdi Kefayati and Ross Baldick. Energy delivery transaction pricing for In 2011 IEEE International Conference (SmartGridComm), pages 363–368,	ce on Smart Grid Communications	
[KefCar10]	M. Kefayati and C. Caramanis. Efficient energy delivery managemen In 2010 IEEE International Conference (SmartGridComm), pages 525–530, d	ce on Smart Grid Communications	
[nre]	NREL Secure Transportation Data P http://www.nrel.gov/vehiclesand		ata.html.