

Harnessing electric vehicle demand flexibility: Energy and Power are the Keys! Ross Baldick, Professor and Director,

Center for Electric Vehicles:

Transportation Electricity Convergence.

Center for Transportation Research Symposium, April 3, 2013.

Outline

- Promise of vehicle electrification,
- Power versus energy,
- Gas station filling paradigm,
- Drivers of cost in electricity industry,
- Paradigm shift,
- Projections of charging load,
- Energy and power are the keys!

Promise of vehicle electrification

- Reduce use of oil imported from overseas:
 - For the other 47 contiguous states, reduce use of oil imported from Texas!
 - Fracking has significantly increased the domestic supply of natural gas and, more recently, liquids.
- Expanded supply and low price of natural gas has changed the electric generation landscape:
 - In Texas, combined-cycle natural gas generation is currently cheaper to operate than much coal.

Promise of vehicle electrification

- Reduce greenhouse and other emissions:
 - Electric generation generally lower emissions than using gasoline in internal combustion engine (ICE): <u>http://www2.daimler.com/sustainability/optiresource/index.html</u>
 - For electric cars charged off-peak (overnight) in Texas, incremental resource is sometimes wind that has zero variable emissions:
 - Wind blows more overnight in Texas than during day,
 - Wind curtailed when electric load sufficiently low overnight,
 - Plans for increased wind in Texas will increase curtailment at times of low load.

Promise of vehicle electrification

- Several studies have suggested that there is potential for expanding electrical *energy* production in North America to allow for transportation electrification with relatively small, or negligible, expansion of generation, transmission, and distribution infrastructure.
- This promise requires qualification in context of distinguishing energy from power.

Power versus energy

- Power is the rate of doing work or delivering energy:
 - Standard units in electricity are kW and MW,
 - Fixed "exchange rate" with horsepower,
- Energy is the amount of work done or delivered over time:
 - Standard units in electricity are kWh or MWh,
 - Fixed "exchange rate" with Btu.

Power and energy

- Large-scale storage of electricity is relatively costly:
 - Most electric energy is produced essentially simultaneously with its consumption,
 - So, maximum power rating (capacity) of generation, transmission, and distribution system must be sized to cover maximum peak load,
 - Charging an electric vehicle at 4pm requires electricity to be produced at 4pm,
 - Production cost at 4pm typically higher than off-peak.

Power and energy

- In electricity industry average power is much lower than power capacity:
 - Considerable unused capacity available *each night*.
- In contrast, storage of liquid fuels is relatively inexpensive compared to electricity storage:
 - Production of gasoline not as coincident with use,
 - Production capacity of gasoline production sized closer to average and operated at more constant level with storage smoothing out demand variation.

Power

- "Charging" a conventional car with gasoline provides about 33.4 kWh of energy per gallon:
 - But efficiency of conversion of gasoline into mechanical energy only around 30%,
 - So effective delivery is about 10 kWh per gallon.
- *Power* transfer for filling a 10 gallon tank in 2 minutes:
 - $(10 \text{ kWh/gal}) \times (10 \text{ gal}) / (2 \text{ minutes}) = 3 \text{ MW},$
- How does that compare to charging plug-in electric vehicles (PEVs)?

Conventional electric vehicle supply equipment (EVSE)

Level I: 1.8 kW

Gasoline is hard to beat for

moving energy

Filling up the tank: **3 MW = 3000 kW**

Tesla Supercharger: 100 kW

Power levels of familiar loads

- Typical house has average power level of 2 kW.
- Peak household load in Texas (driven by level of air-conditioning) typically below 10 kW.
- University of Texas main campus peak load is around 50 MW.
- Equivalent maximum power level for just 3 gas stations each with 6 filling bays is more electric load than the whole of UT main campus!
 - There are around 10 gas stations near UT!

Energy

- Approximate typical battery energy capacity:
 - Toyota Prius: 1.2 kWh,
 - Plug-in Prius: 4 kWh,
 - Chevy Volt: 16 kWh,
 - Nissan Leaf: 24 kWh,
 - Tesla Model S: 85 kWh (largest PEV battery).
- A 10 gal gasoline tank can store 100 kWh of equivalent mechanical energy:
 - Many cars have much larger tanks.

Gas station filling paradigm

- Gas station filling relies on being able to deliver a lot of energy in a short time to a car:
 - Delivery power of 3 MW is high.
- Reproducing that paradigm for PEV charging:
 - Battery technology: an order of magnitude behind,
 - Cost of delivery infrastructure: adding multiple 100 kW (or 3 MW) loads will require significant upgrades,
 - Daytime charging: coincident with highest operating cost generation, and inability to use off-peak generation resources.

Gas station filling paradigm

- To summarize, achieving fast charge of electric vehicle with high power is aimed at reproducing paradigm of filling up the tank at gas station:
 - But electric power level needed is much larger than other typical retail end-uses of electricity,
 - Charging at time of peak demand will necessitate generation, transmission, distribution upgrades, and involve high operating cost generation resources.

Drivers of cost in electricity industry

- Commodity cost of electric energy in Texas is less than half of total retail:
 - Retail price significantly above energy cost due to cost of transmission and distribution system.
- PEV charging on-peak:
 - Increased capacity of generation, transmission, and distribution,
- Off-peak charging:
 - Just cost of incremental energy, including wind.

Paradigm shift

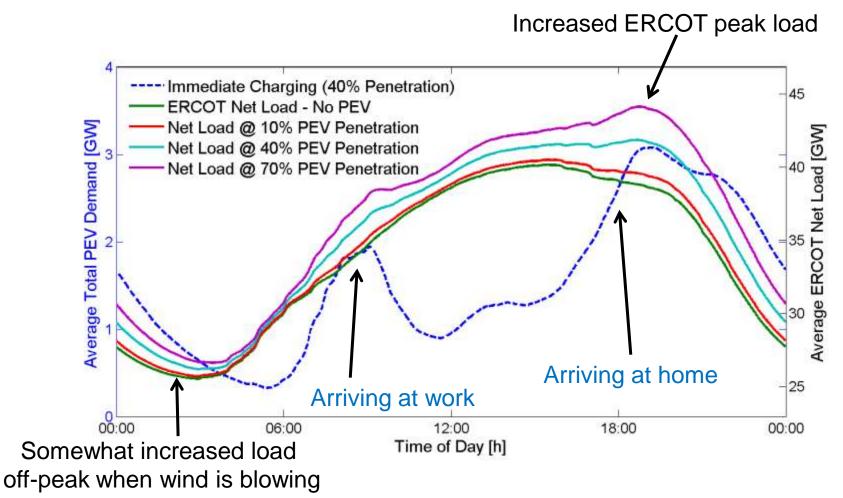
- Instead of trying to reproduce gas filling station experience:
 - Charge at home overnight most of the time.
- PEV range anxiety issues:
 - Plug-in hybrid vehicles (battery plus ICE),
 - Small number of highly visible public charging stations.
- Overnight charging facilitates using more wind energy.

Projections of charging load

- With few electric vehicles currently, effect on driving and electricity system is minimal:
 - Effects must be estimated from projections of available data,
- My student Mahdi Kefayati has used Seattle driving data and Texas electricity data to estimate average future charging scenarios:
 - Varying assumed penetrations of Plug-in Electric Vehicle (PEV) in the light vehicle fleet,
 - Nissan Leaf charging requirements, Level II EVSE.

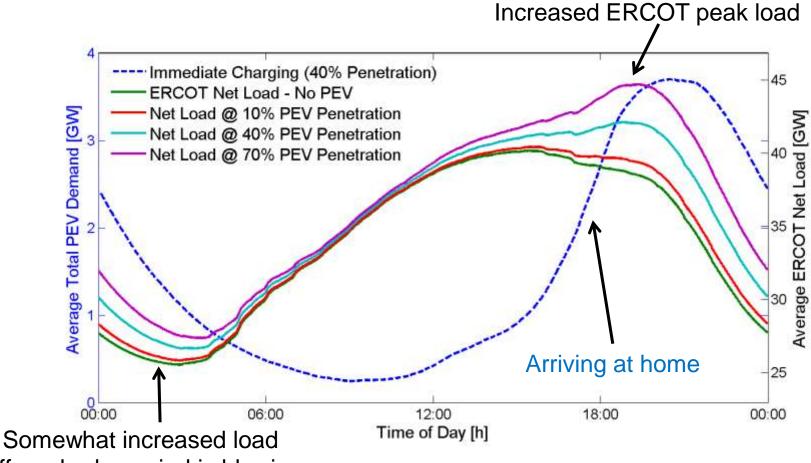
Projections of charging load

- Most of Texas is part of the Electric Reliability Council of Texas (ERCOT),
- Most Texas wind is generated within ERCOT.
- Net load = difference between load minus wind production:
 - Supplied by thermal generation system,
- Significant growth in on-peak net load would require more investment in generation, transmission, and distribution.



Projections of charging load

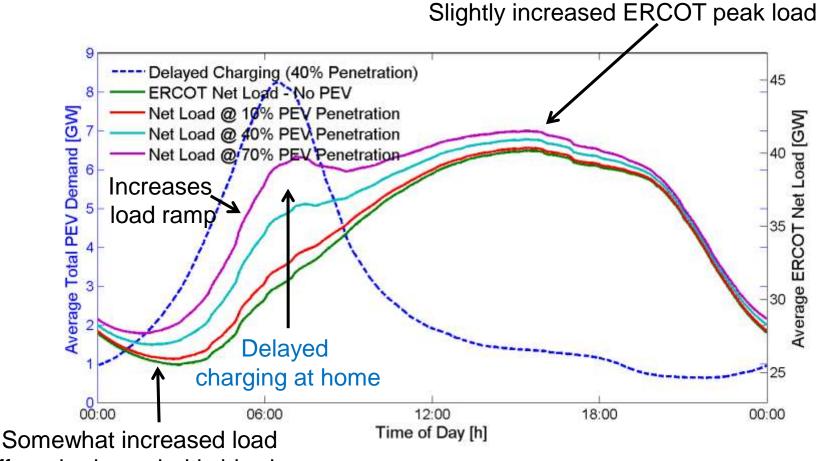
- Comparisons of timing and rate of charge:
 - Immediate: at maximum rate as soon as plugged in (like charging a cellphone),
 - Delayed ("grid friendly"): at maximum rate in the last hours before departure (available in some PEVs),
 - "Average rate" (Mahdi's idea): at minimum rate necessary to charge between plug in and departure.
- Comparisons of availability of EVSEs:
 - Whenever stopped for more than three hours,
 - At home (primarily overnight) charging only.



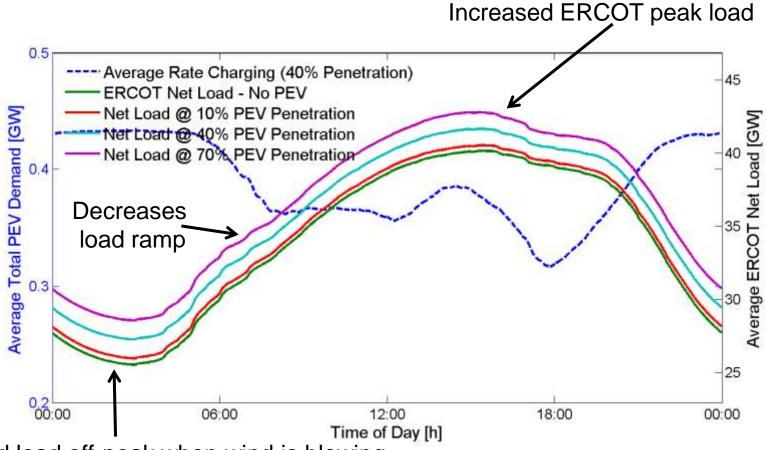
Immediate Charging

Immediate Charging at Home

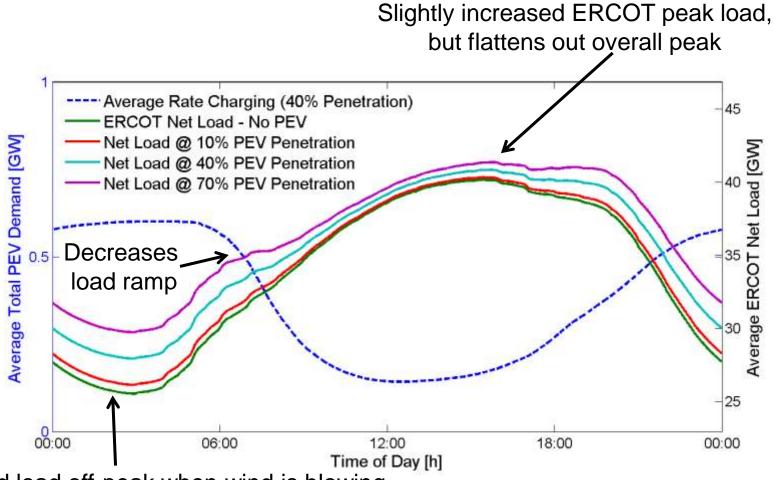
off-peak when wind is blowing



Delayed Charging


Delayed Charging at Home

off-peak when wind is blowing


Average Rate Charging

Increased load off-peak when wind is blowing

Average Rate Charging at Home

Increased load off-peak when wind is blowing

Paradigm shift of home charging

- Average rate charging at home:
 - Slow charging off-peak matches minimum of net load and allows *better utilization* of electric grid, including wind,
 - Avoids need for significant expansion of (public) infrastructure,
 - Not trying to reproduce paradigm of gas station filling.
- Energy *and power* are both keys to electrification of transport.

Conclusion

- Vehicle electrification has great potential benefits.
- Consideration of *power* requirements suggests a change in paradigm compared to gas station filling.
- Slow overnight charging of electric vehicles using average rate policy can improve utilization of infrastructure,
- Energy *and power* are the keys!

