

#### Meeting worldwide demand for electricity

#### Ross Baldick,

#### Department of Electrical and Computer Engineering, University of Texas at Austin.

Innovators, Engineers & Entrepreneurs Austin, Texas February 26, 2016.

#### Outline



- Pre-eminent issues of the twenty-first century.
- Greatest engineering achievement of twentieth.
- Energy in 10% of world living in wealthy countries.
- Campus solar-powered charging station case study.
- Pay attention to back-of-the-envelope.
- Relevance to the other 90%?
- Greatest engineering achievement revisited.
- Prosperity and electricity consumption.
- Renewables and generation following demand.
- Demand following generation.
- Transportation electrification.
- Opportunities to make a real difference.



# Pre-eminent issues of the twenty-first century.

- Climate change/emissions:
  - Energy industry generally, and
  - Electricity industry in particular.

#### Issues are both:

- Chronic, over coming decades, need to radically reduce our carbon dioxide emissions to limit effects on climate change,
- Acute, urgently need to reduce various other emissions, particularly in China and other developing countries, to reduce harm to health. 3



# Pre-eminent issues of the twenty-first century.

- Increasing prosperity of several billion people in China, India, South America, Southeast Asia, Africa:
  - Who want to use increasing amounts of energy, including electricity.





### Greatest engineering achievement of the twentieth century

- National Academy of Engineering nominated electrification:
  - □ Ultimate just-in-time industry where product is generated milliseconds before consumption,
  - Kinetic energy in system holds about 8 seconds of inventory,
  - □ Generators are controlled to follow variation in demand by measuring frequency:
    - "generation following demand."



# Energy and energy changes in wealthy countries: US, EU.

- Europe has higher energy costs than US, and lower energy intensity.
- But both have highly electrified economies:
  - Total population around 700 million out of about 7 billion on planet,
  - Energy and electricity per unit of gross domestic product *decreasing* with improved efficiency and increasing fraction of the economy involved in provision of services.



# Energy and energy changes in wealthy countries: US, EU.

- These wealthiest 10% on planet can fund essentially any choices:
  - □ Energiewende in Germany:
    - Solar in not-so-sunny Germany,
  - □ Sunrise Power Link in California:
    - Most expensive electric transmission in known universe, built to access renewable resources.
  - University of Texas solar-powered charging stations for our gadgets:
    - Fine for awareness of solar and convenience,
    - Not necessarily for large-scale deployment.



## Latest technology from UT conspicuous unsustainability



Is this a technology that should be widely deployed?

Photograph taken by author in Austin in February 2016.



# Pay attention to a back-of-the envelope calculation!

- Approximate cost around \$50k (according to <u>http://reportingtexas.com/solar-stations-put-a-</u> <u>charge-in-ut-campus/</u>):
  - Suppose large-scale manufacture was only a tenth of this, say \$5k.
- Around 10kWh per week produced (according to

https://www.utexas.edu/sustainability/

documents/

VisualizingSolarData BethFerguson.pdf)



### Pay attention to a back-of-the envelope calculation!

- Over 50 year life (probably an over-estimate), energy produced would be around 25MWh,
   Retail value around \$2500,
  - $\Box$  Assuming all displaced generation were coal with CO<sub>2</sub> valued at \$100/ton, would add another \$2500.
- Even with highly favorable assumptions, cost does not justify energy and CO<sub>2</sub> benefits:
  - □ Fine for advertising solar as a concept,
  - Fine for delivering small amounts of high value convenience.



### **Relevance to other 90%?**

- What lessons are useful to everyone else?
  - Actions of other 90% will eventually have much greater effect on carbon dioxide and climate change than actions in US and EU.
  - Need to actually reduce emissions, not just substitute in one industry for another.
- Arguably, California could have contributed more to reducing global warming by investing in wind production in Texas than building Sunrise Power Link to access remote solar in California.



### **Relevance to other 90%?**

- Specific lessons from roof top solar in California (and elsewhere) can be applicable if they demonstrate a model that is transferrable:
  - □ Regulations,
  - □ Balance of system cost reduction,
  - □ Grid implications.
- Technology development spurred by roof top solar has led to significant cost reductions that will have global benefits.



## Greatest engineering achievements, revisited?

- Founding prime minister of Singapore, Lee Kuan Yew, suggested air conditioning (powered by electricity!)
- Consumption of electricity will grow as billions achieve even modest prosperity:
  - Lighting, running water, sewage, machines, refrigeration, appliances, telecoms, radio, television, computing, internet, airconditioning, vehicular electrification.
  - □ Basically everything we take for granted.



## Solar panel and battery in goat-herder hut in Chile.



Photograph taken by author in 2005 in Chile.



# Electricity consumption increases with prosperity.

- Growth of air-conditioning (AC):
  - When I was growing up in Sydney, not a single one of my friends had AC, except a family from Eastern Europe (window unit!).
- These days, all the people I know in Sydney have AC:

□ despite the relatively mild climate!

Most prosperous parts of Southeast Asia are now extensively air-conditioned.



# Prosperity and electricity consumption.

- Can expect similar developments in newly prosperous communities in warm to hot climates everywhere:
  - Not just 5 million Singaporeans, 7 million Hong Kongers, or 23 million Australians, but several billions living within 35 degrees North and South of the equator.
- Air-conditioning (AC) is one of highest consumers of electrical energy and drives peak demand in Texas.



17

## Air-conditioning becomes pervasive.



The air conditioners at the back lane of Boat Quay, Singapore, by Choo Yut Shing. Downloaded from <u>https://www.flickr.com/photos/25802865@N08/14195375904</u> Used pursuant to creative commons license: <u>https://creativecommons.org/licenses/by-nc-sa/2.0/legalcode</u>



## Heating in cooler climates.

- Heating will likely also become more electrified,
- Increasing prosperity of peoples in colder climates will also contribute to electricity consumption.



# Prosperity and electricity consumption.

- AC/heating is not the only growing electrical demand, but it is a potentially huge burden on electricity systems, and huge contributor to carbon dioxide.
- What exactly is moral position of wealthiest 10% regarding everyone else getting electricity-hungry mod cons?
- Are there less carbon intensive alternatives for roughly equivalent services?



# Generation follows demand.

- Large-scale power systems involve feedback of supply-demand balance (measured by frequency) to control generator output:
  - □ Modern version of Watt governor,
  - □ Works well if generation sources are controllable.
- Increasing amount of renewable production relying on variable wind and solar reduces controllability:
  - □ Complicates generator follows demand paradigm.



# Alternatives to generation follows demand.

- Reversible storage of electricity allows decoupling of production from consumption:
  - Utilized in pumped storage hydro, compressed air energy storage,
  - □ Batteries, still rather expensive.
- Storage in end-use such as thermal:
  - □ Modulate consumption of electricity for AC.
- Demand follows generation:
  - Consume when renewables producing.



# Modulate consumption of electricity for AC.

- In many countries, AC is a relatively new innovation for residential.
- Scope to re-think AC in such places before it becomes entrenched:
  - Greater thermal storage in buildings,
  - □ Better passive thermal design,
  - □ AC running hardest when renewables highest,
  - Alternative services: dehumidify with dessicants.



## Consume when renewables producing.

- Amongst delivered energy carriers, electricity has highest potential for low carbon.
- Electric vehicles have flexible consumption:
  Vary charge rate during the considerable time when car is idle and plugged in.
- Increase fraction of flexible load to complement increase in intermittent production:
  - □ Increase the demand following generation.



# Opportunities to make a real difference.

- Deliver to billions of people the services provided by electricity that we take for granted, but without increasing CO<sub>2</sub> proportionally:
  - Lower cost renewables and other non-fossil generation,
  - □ Lower cost battery storage,
  - □ Reducing the energy required for end-uses,
  - □ Storage in end-uses,
  - Flexible end-uses.



#### Conclusion

- Pre-eminent issues of the twenty-first century.
- Opportunities to make a real difference.
- Pay attention to the back-of-the-envelope.